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ABSTRACT
With the fast growth of the knowledge bases built over the
Internet, storing and querying millions or billions of RDF
triples in a knowledge base have attracted increasing re-
search interests. Although the latest RDF storage systems
achieve good querying performance, few of them pay much
attention to the characteristic of dynamic growth of the
knowledge base. In this paper, to consider the efficiency
of both querying and incremental update in RDF data, we
propose a hAsh-based tWo-tiEr rdf sTOrage system (abbr.
to AWETO) with new index architecture and query exe-
cution engine. The performance of our system is system-
atically measured over two large-scale datesets. Compared
with the other three state-of-the-art RDF storage systems,
our system achieves the best incremental update efficiency,
meanwhile, the query efficiency is competitive.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design—Access
methods; H.2.4 [Database Management]: Systems—Query
processing ; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods

General Terms
Algorithms, Design, Performance

Keywords
AWETO, RDF, Index, Incremental Update, Query

1. INTRODUCTION
The RDF (Resource Description Framework) [5] data model,

recommended by W3C, is widely adopted to represent the
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relationships in a knowledge base. With the much efforts
in extracting relationships over the Internet in recent years,
storing and querying these relationships, represented by the
RDF triples, have attracted increasing research interests.
Current research on large-scale RDF storage system mainly
focuses on query efficiency of the system but considers lit-
tle on incremental update, which is essentially required by
the increasing size of knowledge bases. Therefore, consider-
ing the dynamic nature of the built knowledge base, a well-
designed RDF storage system is extremely needed for fast
incremental update and querying of RDF triples. In this pa-
per, we propose a new RDF storage system AWETO (abbr.
for a hAsh-based tWo-tiEr rdf sTOrage system) with new in-
dex architecture and query execution engine which considers
the efficiency of both querying and incremental update. In
AWETO, a hash-based string-ID mapping strategy is firstly
developed which maps the string representation of triples to
their ID representation in a hash manner. Secondly, instead
of creating big clustered B+ tree indices for all triples, we
group the triples according to different atoms and different
roles (subject, predicate or object) of atoms to create a two-
tier index. The above two designs of the index architecture
benefits the incremental update procedure, in the meantime
the query performance is also competitive. Due to our new
index architecture, new query execution engine is developed
for fast access of the index. Note that incremental update
only refers to incremental bulk load of the RDF triples in
this paper, and other update operations such as triple dele-
tion are for future work.

2. STRING-ID MAPPING APPROACH
Before the creation of the ID-based triple index, we con-

vert the triples to their ID representation. Most of the RDF
storage systems do the transformation because it decreases
the index size and improves query efficiency.

Typically, while performing incremental update, the RDF
storage system will look up each string in the input data to
generate ID-based triples. This approach will cause vast disk
look up because each string in the input data file need to
be looked up in the in-disk string-ID mapping table, which
causes performance degradation. We adopt a hash-based
approach in our system, however it is different from those in
previous work. We use an in-disk ID-to-string mapping table
and an in-memory conflict map rather than only the in-disk
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string-ID mapping table to efficiently resolve the string-ID
mapping. With the in-memory conflict map, our approach
can efficiently resolve the string-ID mapping in a fast and
bulk manner, which cannot be accomplished in previous
work.

During initial bulk load, we generate a temp file which
contains all different strings with their IDs and the file is
sorted by IDs. The IDs in the file are generated by the hash
lookup algorithm [1]. Then, for each (id, string) pair in the
temp file, we determine whether id equals to the ID in the
previous pair in the file. If it does not, we add the pair into
an in-disk ID-to-string mapping table (denoted as itsTable).
Otherwise, we know that the id has already been assigned
to another string. On this occasion, we use a conflict map
(denoted as conflictMap) to record all such strings, which
is called conflict string. Another ID newID is assigned and
the (newID, string) pair is added both to the itsTable and
conflictMap.

When an ID-to-string look up is needed, we use itsTable
to look up strings. In our current implementation, we adopt
the Tokyo Cabinet [4] B+ tree as the ID-to-string mapping
table. To improve the performance of itsTable, a Bloom fil-
ter [9] is added above itsTable. For conflict map, the num-
ber of conflict strings is small when a good hash function,
is adopted even for large RDF data, thus, the conflict map
can be located in memory for fast access.

For the sequential string-ID mapping approach, a string-
to-ID mapping table must exist in disk to get the ID of a
specific string. However, in our approach, the in-disk string-
to-ID mapping is not essential which saves a lot of disk space.
When we need to convert a string s into its ID representa-
tion, we first look up s in conflictMap. If conflictMap
contains s, we naturally get the ID, otherwise, h(s) is com-
puted. If we are sure that s exists in the string-ID map-
ping, h(s) is naturally the ID representation for s. It can
be used for generating ID-based triples after the string-ID
mapping. If we are not sure the existence of s, h(s) is looked
up in itsTable. If we get exactly the string s by the look
up, we can conclude that h(s) is the ID representation of s,
otherwise, we know that s does not exist in the string-ID
mapping.

Differently from initial bulk load, during incremental up-
date, the conflict strings cannot be retrieved by the temp file
mentioned above because there have already existed many
strings in the string-ID mapping. In this case, we generate a
temp file which only contains all different strings of the new
triples to be inserted, sorted by h(s). Then, for each string
s in the temp file, we look up if s is contained by string-ID
mapping. If it is, nothing will be done, otherwise, we need
to check if s is a new conflict string. If it is, we assign a
new unused ID newID for it and add (newID, s) into both
itsTable and conflictMap, otherwise, (h(s), s) is added into
itsTable.

Compared with the traditional ID assignment approaches,
which looks up each string in the new triples in string-
ID mapping, we propose a two-step string-ID mapping ap-
proach. The first step resolves all the strings to their ID
representation which is depicted above; the second step per-
forms a sequential scan of the input data and generates ID-
based triples. Our approach achieves high efficiency for the
following two reasons. Firstly, in the first step, the number
of different strings is much smaller than that of all the strings
in the source file, less I/O operation is required to look up

the strings. Bloom filter is adopted which also decreases
the number of I/O operations. Secondly, in the second step,
all the strings in the new triples have been already resolved
and added to our string-ID mapping. On this occasion, each
string is looked up extremely fast because no I/O operation
for looking up string-ID mapping is needed. We only need
to perform look ups in the in-memory conflict map and cal-
culate the hash values of the strings.

3. TRIPLE INDEX
Traditionally, several big clustered B+ trees are used to

store different orders of the ID-based triples. During the
incremental update procedure, large number of triples with
their ID form will be inserted into the B+ trees which causes
heavy maintenance burden. If the number of insertions
could be decreased, it could improve the performance of in-
cremental update. Based on this consideration, differently
from previous work, we adopt a new two-tier index archi-
tecture. The upper tier is called atom position index (AP
index) which is actually a small B+ tree index, and the lower
tier is called binary tuple index (BT index) which adopts our
own index strategy that can be efficiently maintained.

Our triple index consists of four different index orders: S-
PO, P-SO, P-OS, and O-PS. The basic idea is to separate
a triple into a single atom and a two-atom tuple, which is
called binary tuple. The separated atom is stored in AP
index with some information related to it. All the binary
tuples associated with each separated atom are sorted and
stored in BT index.

The AP index is a key-value store in disk which is im-
plemented by B+ tree. For each atom that appears in each
role of a triple, we add a data item into AP index. The key
is a 9-byte (flag, atom) pair (FA pair). The first byte is a
flag byte, which indicates not only the role of the atom, but
also the order of the associated binary tuples in BT index.
The following 8 bytes after the flag byte contain the ID rep-
resentation of the atom. The value associated with the key
contains all the (position, length) pairs which indicate where
the binary tuples associated with the FA pair are stored in
BT index.

The BT index is a file located in disk. We divide the
disk space into blocks, which is the basic unit for allocating
disk space in BT index. The length of a block should be
small, especially for the orders of S-PO and O-PS, because
binary tuples associated with different FA pairs use different
blocks, if block size is big, too much internal fragmentation
will be made. Note that, due to the small size of block, it is
only used for allocating disk space, not used for reading and
writing data in disk.

Although blocks may be incontinuous in disk, for each FA
pair, the blocks associated with it can be seen as logically
continuous. We group each n logically continuous blocks into
a segment, where n is called segment size. To support fast
query execution, for each FA pair, except storing (position,
length) pair, we also store the range information of the bi-
nary tuples for each segment in the value field of the FA pair,
which is used by our query execution engine. Segment is
treated as the basic unit of operating on the indexed data in
BT index, including data compression/decompression, atom
filtering (discussed in Section 4) and U-SIP [13] pruning.

Compression is needed for both the AP index and BT
index. For AP index, we adopt the famous variable-byte
coding [17] for the value field of AP index. For BT index,

2446



instead of storing the original binary tuples, we adopt our
own compression scheme which is similar to [12]. We omit
the details for space limitation.

When performing incremental update, we sort the new
ID-based RDF triples into four different orders, i.e., SPO,
PSO, POS and OPS to get the FA pairs and sorted binary
tuples associated with them. For each of the FA pairs and
the associated binary tuples btnew, we get the binary tuples
btold which have the same role and atom with btnew in triple
index. Then we perform a merge union operation to merge
the btold and btnew. After that, we write the merged data
into disk using the space that has already been allocated
to btold. If the space is not sufficient, new space will be
allocated. If the old AP index does not contain the new
FA pair, we directly allocate new space and write btnew into
disk. Finally, we update the value field of AP index.

4. QUERY EXECUTION
Our query execution engine executes queries in a pipelin-

ing way; query is executed by an operator tree. Each opera-
tor gets part of data from its children and achieves its own
logic. Due to our new index architecture, the index scan
operator is different from that in previous work. In our sys-
tem, the index scan operator reads and decompresses data
from disk by segment. We take the S-PO order for example.
There are four kinds of simple access patterns (SAPs) related
to S-PO order: (s, ?p, ?o), (s, p, ?o), (s, p, o), and (?s, ?p, ?o).

For SAPs like (s, ?p, ?o), we firstly look up the AP index
using atom s, then according to the positions and lengths
information got from AP index, the bindings for ?p and ?o
can be naturally retrieved. For (s, p, ?o) and (s, p, o), we
also firstly look up AP index using s. However, among all
the bindings of (s, ?p, ?o), we must get the bindings that
satisfy ?p = p for (s, p, ?o) or ?p = p, ?o = o for (s, p, o).
Here, we adopt an efficient atom filter to accomplish this
task. It first filters in the segment level and skips useless
segments according to the range information before reading
the segments, then only the data in the first and last read
segments need to be filtered after the skips. At last, for the
special case (?s, ?p, ?o), we perform a full scan on the AP
index to get all the bindings of ?s. Then for each binding of
?s, the operation is the same as (s, ?p, ?o).

5. EXPERIMENTAL EVALUATION
In order to evaluate the performance of our system, we

compared both the query runtime and incremental update
efficiency to other systems. All the experiments were done
on an IBM System x3650 server (eight 1.66GHz CPU cores,
20GB memory) with 64-bit Linux. Two datasets are used,
YAGO2 [6] (the core version) and LUBM [11]. YAGO2
contains 15,820,985 different strings and 32,393,226 differ-
ent triples. For LUBM, we generated a dataset which con-
sists of 500 universities by the UBA 1.7 data generator with
index = 0 and seed = 0. The dataset contains totally
16,439,335 different strings and 66,751,196 different triples.
Because LUBM is a synthetic dataset, the triple order in it
has fixed and regular pattern. Thus, we disorganized the
triple order in the dataset to make it more natural. In all
the tests, the block size is set to 32 bytes. Segment size is
set to 32 for YAGO2 and 512 for LUBM.

The RDF-3X system introduced in [12, 13, 14, 15] is the
primary competitor of our system because it has achieved
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Figure 1: Query run-times evaluation

the best performance among all the current RDF storage
systems. The second baseline system is column-store-based
vertical partitioning approach introduced in [8, 7], which
has gained the best performance among all other approaches
based on DBMS. Differently from vertical partitioning ap-
proach, we used MonetDB [2] instead of C-Store [16] as
the underlying column store suggested by the authors of
C-Store. The third baseline is the PostgreSQL [3] database
system acting as triple store. The indices were built with the
orders SPO, PSO and POS which belong to the Sesame-style
storage system [10].

The query evaluation for YAGO2 and LUBM are shown in
Figure 1. For YAGO2, RDF-3X storage system achieves the
best performance in cold caches and our system performs
the best in warm caches. In cold caches, RDF-3X outper-
forms our system by an average factor of about 1.4, while
in warm caches, our system performs better than RDF-3X
by an average factor of about 1.2. The main reason for the
slowness of our system in cold caches is that our system
takes both querying and incremental update into consider-
ation. The big ID range of hash-based string-ID mapping
influences the compression efficiency of binary tuples, thus
slows down the I/O read time. Our system performing well
in warm caches benefits from our well-designed query ex-
ecution engine. For MonetDB and PostgreSQL, our sys-
tem achieves much higher efficiency than the two systems.
Our system outperforms PostgreSQL by an average factor
of 11.8, sometimes by more than 47.1 in cold caches and
an average factor of 2.9, sometimes by more than 12.2 in
warm caches. Differently from performance reported in [8],
MonetDB performs the worst because we have included the
time for converting the string representation of atoms in
the SPARQL query into their ID representation. MonetDB
consumes much of the time for this conversion which has
dominated the query time.

LUBM has similar result. RDF-3X storage system achieves
the best performance and our system is the runner-up. RDF-
3X outperforms our system by an average factor of about
1.7 in cold caches and about 1.5 in warm caches. For Post-
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Figure 2: Incremental update evaluation

greSQL, our system outperforms PostgreSQL by an average
factor of 7.7, sometimes by more than 49 in cold caches and
an average factor of 4, sometimes by more than 78 in warm
caches. For MonetDB, string-to-ID mapping also dominates
the whole query time.

To evaluate incremental update efficiency, for all the sys-
tems, we take the N3 file as input. Our system has full
ability to accomplish incremental update. For RDF-3X sys-
tem, although the authors have implemented incremental
update in their system, it cannot work well according to our
experiment. Furthermore, our system and RDF-3X uses dif-
ferent programming language and B+ tree implementation.
To make a fair comparison, we implemented the basic idea
of incremental update procedure of RDF-3X in Java and
used Tokyo Cabinet which is the same as AWETO and tried
our best to make the code the most efficient. We reduced
the number of triple indices in RDF-3X from fifteen to four,
which makes RDF-3X have the same number of indices with
our system. For MonetDB and PostgreSQL, we found the
incremental update operation is much slower than that of
our system and RDF-3X, thus we only report the incremen-
tal update performance of our system and RDF-3X.

We assume the following scenario of incremental update.
For YAGO2 dataset, the initial size of the knowledge base is
set to 10 million triples. We repeat 10 batches of incremental
update, 1 million triples in each batch. For LUBM we set
the initial size to 30 million triples and repeat 10 batches of
incremental update, 2 million triples per batch.

The experimental results of string-ID mapping strategy
and triple index for our system and RDF-3X are shown in
Figure 2. The X-axis indicates the number of triples (in
million) in the knowledge base after the incremental up-
date. For both the string-ID mapping and triple index, our
system achieves the best incremental update efficiency and
outperforms RDF-3X a lot with both of the two datasets.
For string-ID mapping, our system outperforms RDF-3X
by an average factor of 3.638/4.962 by adopting our hash-
based String-ID mapping approach using YAGO2/LUBM
dataset. Also, our system outperforms RDF-3X by a factor
of 2.964/2.453 by adopting our triple index using YAGO2/LUBM.
Therefore, both our hash-based String-ID mapping approach
and the triple index are optimized for incremental update
and more time-efficient compared with previous work.

6. CONCLUSION
In this paper, we propose a new RDF storage system

AWETO which considers both the performance of querying
and incremental update. For string-ID mapping, we adopt
a hash-based approach with in-memory conflict map which
achieves high performance in incremental update. For triple
index, a new two-tier index approach is proposed which op-
timizes the incremental update efficiency. For query exe-
cution, our highly-efficient operators achieve high efficiency
while performing queries. Experimental results show that
our system is competitive in querying and outperforms all
other three state-of-the-art storage systems when perform-
ing incremental update.
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